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Cell dynamics model of droplet formation in polymer-dispersed liquid crystals
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We present a model for the dynamics of formation and morphology of polymer-dispersed liquid
crystals (PDLCs). This incorporates, in a simplified manner, all the key physical ingredients of
the actual fabrication process, viz., polymerization and gelation, phase separation, and growth and
stabilization of a spatially inhomogeneous structure. We model phase separation of the initial pre-
PDLC mixture into monomer- and liquid-crystal (LC)-rich phases by the cell dynamics systems
(CDS) method of Oono and Puri [Phys. Rev. Lett. 58, 836 (1987); Phys. Rev. A 38, 434 (1988);
38, 1542 (1988)]. Gelation at the expense of monomers is described by an auxiliary field (the phase
field), which also obeys a CDS equation for the conserved-order-parameter case. Growth is assumed
to occur at the gel surface. Finally, structure stabilization is achieved by the inclusion of a nonlocal
term that mimics the effect of the long-range interaction respomnsible for gel cohesion. We have
performed detailed numerical calculations on a two-dimensional system for an initial composition
of 30% LC plus 70% monomer. A pattern of LC-rich droplets is found to develop that is stable
as t — oo, where t is time. Moreover, the droplet size distribution exhibits a very sharp peak, in
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agreement with observations on real PDLCs.

PACS number(s): 61.41+e, 64.75+g, 81.20.Ti

I. INTRODUCTION

Polymer-dispersed liquid crystals (PDLCs) are disper-
sions of liquid-crystal rich droplets in a polymer matrix
[1,2]. These can be prepared by a variety of techniques,
all involving the (macroscopically) incomplete phase sep-
aration (“microphase separation”) of an initially homo-
geneous mixture, which have been reviewed by West
[3]. We are concerned with polymerization-induced phase
separation (PIPS), which is illustrated schematically in
Fig. 1. Here the liquid crystal (LC) is dissolved in the
polymer precursor (prepolymer), which is then polymer-
ized by addition of chemical activators, or irradiation
with ultra-violet light or electron beams (see, e.g., [4] and
references therein). The resulting change in the chem-
ical potential of the solvent leads to phase separation
of the LC via droplet nucleation. The mixture contin-
ues to phase separate until gelation of the polymer halts
droplet growth. In the remainder of this introduction
we shall restrict our attention to systems containing only
the simplest type of LC, i.e., a nematic LC, thus effec-
tively ignoring more recent realizations that make use of
cholesteric or smectic liquid crystals [4].

PDLCs are a subject of considerable interest, both fun-
damental and applied. On the fundamental side, they
raise challenging questions addressing very basic aspects
of LC research, such as the dynamics of phase separation,
ordering and structure selection, as well as finite size and
surface effects at equilibrium. The popularity they enjoy
among technologists, however, is due to their potentially
applicable electro-optic properties. By matching the re-
fractive index of the polymer and the ordinary refractive
index of the LC, PDLC films can be switched from a
translucent “off” state to a transparent “on” state by
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application of an electric field. In the field-off state, the
director field inside each droplet is determined by the bal-
ance between nematic elasticity and surface anchoring;
its orientation varies randomly from droplet to droplet,
hence the film scatters light strongly and is opaque. If
an electric field is applied perpendicular to the film, the
director will align along the field direction and for normal
light incidence the film becomes transparent [5]. Unlike
conventional LC displays, these films are flexible and very
easy to prepare, since no orienting glass plates, and hence
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FIG. 1. The making of a PDLC by PIPS.
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no complex surface treatments, are required. In addition,
their light transmittance is much higher than that of the
more conventional twisted- or supertwisted-nematic de-
vices, owing to the absence of polarizers [6]. Some poten-
tial applications are switchable windows, display devices,
infrared shutters, angular-discriminating filters, thermo-
electro-optic switches, memories, gas flow sensors, optical
sensors, and optical gratings [4].

Morphology, and in particular droplet size and density,
has a major influence on the optoelectronic response of
these materials and on the scattering efficiency of their
films [7,8], which is maximized when the droplet size is on
the order of the wavelength of light. Both the threshold
voltage and the switching speed of the resulting display
decrease with increasing droplet size [4]. Although much
empirical knowledge has been gathered on the fabrication
of PDLCs, a detailed understanding of the underlying
physical mechanisms leading to specific properties is still
lacking.

Palffy-Muhoray and co-workers [9-11] have applied the
(linearized) Cahn-Hilliard theory of spinodal decomposi-
tion [12-15] to PDLCs. While this type of analysis yields
information on relevant length scales and their time evo-
lution in the early stages of phase separation, it cannot
perforce reveal anything about the late-time behavior, or
the spatial organization, of the system.

Using purely empirical arguments, Smith and cowork- °

ers [16-18] have been able to extract information on im-
portant aspects of PDLC morphology, such as the rela-
tionship between droplet diameter and droplet number
density, and the fractional amount « of LC contained in
droplets. The quantity o was later related to solubility
parameters in the context of a thermodynamic treatment
[19] based on the Flory-Huggins theory of polymer mix-
tures [20]. The nematic character of the LC is neglected
throughout and a droplet structure is assumed as a start-
ing point rather than derived.

More recently, Lin and Taylor [21] have developed a
mean-field theory of multifunctional polymerization and
gelation. Its application to PDLCs describes phase sep-
aration as a consequence of the rise in the upper critical
solution temperature [22] due to the increasing degree of
polymerization. In contrast to the process of phase sep-
aration by thermal quench, in which the operating point
on the phase diagram descends vertically into the two-
phase region, phase separation due to polymerization is
represented as a stationary point on the phase diagram,
which then becomes engulfed by the upward moving spin-
odal curve. Flory-Huggins theory is again used for the
thermodynamics. A similar approach has been adopted
by Hirai and co-workers [23,24], who, however, treat the
nematic LC explicitly.

The earliest statistical mechanical model incorporating
both phase separation and gelation is that of Coniglio,
Stanley, and Klein [25,26]. It consists of a lattice of
binary occupation variables representing monomers and
solvent molecules, with the key feature that two nearest-
neighbor monomers can interact with two different en-
ergies, chosen according to a given probability. These
correspond to either the usual van der Waals interaction
or a (much larger) chemical bond energy. Theoretical
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work on this model has concentrated on the (equilibrium)
phase diagram, which exhibits, in addition to the usual
miscibility gap of ordinary fluid mixtures, a line of sol-
gel transitions. A recent Monte Carlo simulation [27] has
revealed that, if the probability of forming a strong bond
is large enough, the system becomes “pinned,” i.e., fur-
ther growth of phase-separating domains is arrested by
the gel network. Yet this “microphase separated” state
is a nonequilibrium one, expected to decay if the simula-
tion is carried to longer “times,” on account of the fact
that bond formation is reversible. No results have as yet
been reported for a modification of this model to include
unbreakable bonds between monomers [28].

A continuum version of the Coniglio-Stanley-Klein
model [29] has been proposed by Sciortino and co-workers
[30]. Phase separation and gelation are modeled by
time-dependent Ginzburg-Landau equations for the con-
served and nonconserved order-parameter cases, respec-
tively [31]. The coupling between the two phenomena
is accomplished by letting monomer mobility depend on
gel concentration and the gelation threshold depend on
monomer concentration. Although this theory success-
fully introduces irreversibility, it treats gelation as an
equilibrium process governed by a “free energy,” which
is somewhat questionable.

In this paper we present a model for the dynamics of
formation and morphology of PDLCs that captures, in
a simplified manner, most of the essential physics of the
actual fabrication process, viz., polymerization and gela-
tion, phase separation, and growth and stabilization of a
spatially inhomogeneous structure. In Sec. II we start by
summarizing our idealization of PDLC formation dynam-
ics. We then introduce our dynamical model and discuss
its different ingredients. In Sec. III results are presented
for the monomer and gel concentration patterns, as well
as for the circularly averaged gel structure factor, droplet
size distribution, and mean droplet size, as a function of
time. We justify our choice of model parameters and
show that our data are in qualitative agreement with ob-
servations on real PDLC systems. Finally, in Sec. IV
we conclude by summarizing our results and discussing
possible improvements to our model, as well as future
directions of research.

II. THEORY
A. Primer of model building

Consider a three-component system consisting of a ne-
matic LC, “monomer,” and “gelled polymer.” At this
rather early stage we do not introduce any radicals or
initiators as occur in real systems. Although the final
morphology obviously depends on general features of the
fabrication process such as the rate of polymerization,
intensity and duration of irradiation, or cure tempera-
ture, its detailed chemistry might not be too relevant.
Moreover, we shall also neglect the nematic character of
the LC component, consideration of which should not
change our results substantially. Indeed, in the (mean-
field-like) type of theory we are using, nematic order-
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ing occurs when the (local) concentration of the nematic
component exceeds a certain threshold. Since this only
happens in regions where phase separation is already well
advanced, it is unlikely to influence the corresponding dy-
namics. Inclusion of the nematic effect would, of course,
be crucial for a realistic modeling of the optical properties
of PDLCs.

We start by assuming that the incompressibility con-
dition is satisfied, viz.,

cLc +cm + ¢4 =1, (1)

where crc, ¢m, and ¢g4 are the concentrations of the LC,
monomer, and gel, respectively. We emphasize that this
need not be true of a real pre-PDLC mixture, in which
case a more sophisticated treatment would be called for.
One possibility would be to add “voids” as an addi-
tional, noninteracting, component, the chemical poten-
tial of which would be proportional to the pressure [32].
As a first approach, however, we restrict ourselves to the
simplest case.

We begin by giving a brief summary of PDLC forma-
tion as we idealize it. At time ¢ = 07", i.e., immedi-
ately after polymerization has been initiated, our mix-
ture consists predominantly of LC and monomer (typi-
cally, eLc <€ ¢m) and a small amount of gel (c; < 1).
Now as “gelation” (which in this model is not distinct
from polymerization) proceeds, ¢y will increase at the
expense of ¢,,, while c1,c remains constant (since the LC
does not take part in the chemical reaction). Hence cLc
and ¢, + ¢4 are conserved, but not c,, or ¢y individually.
Note that the incompressibility relation, Eq. (1), implies
that there are only two independent concentration vari-
ables (e.g., ¢, and c¢g). As the monomer is depleted,
the mixture, initially in the one-phase region of its phase
diagram, is driven into the two-phase region and begins
to phase separate, since the LC and gel become less and
less miscible. At the same time, an underlying gel net-
work is formed, which eventually arrests growth of LC-
and monomer-rich domains. We therefore expect that,
for sufficiently low LC concentrations and appropriate
gelation rates, the final product will consist of a disper-
sion of LC-rich droplets in a gel matrix. We expect two
length scales to appear in the problem, one associated
with phase separation (average size and/or separation of
domains) and one associated with the finer network struc-
ture due to gelation. This is similar to what is observed
in gelatin-water-methanol mixtures [33,34]. Likewise, the
above phenomena are expected to occur on two (poten-
tially very) different time scales. One final difficulty con-
cerns the stabilization of a microphase-separated, spa-
tially inhomogeneous, structure.

Perhaps the simplest model conceivable is one in which
phase separation is described by the usual spinodal de-
composition formalism [31}, whereas polymerization and
gelation are modeled by a modified version of diffusion-
limited aggregation [35]. The latter amounts to assuming
a “chemically naive,” “contact” chemical reaction mech-
anism: monomers are allowed to diffuse until they en-
counter a gel site, where they stick with a given proba-
bility [36]. Diffusion of gel particles is never allowed.
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Simple and attractive as this model might be, it nev-
ertheless proves physically unreasonable. Indeed, global
conservation (i.e., conservation of the total amount of LC
plus monomer plus gel) introduces spatial correlations in
the concentration fields, which are neglected in this ap-
proach: depletion of a particular chemical species due
to chemical reaction at a certain location is effectively
decoupled from the dynamics of the corresponding con-
centration field. This, combined with the fact that the
gel is not allowed to relax dynamically in order to ac-
commodate spatial inhomogeneities in a self-consistent
manner, leads to unphysical results, such as unbounded
negative concentrations. Put more simply, phase separa-
tion has its own dynamics; this need not be the same as
that of a naive chemical reaction-diffusion-limited aggre-
gation model, which is characterized by wholly different
time and length scales.

Clearly, the difficulties described above originate in the
attempt to unite, in a single theoretical scheme, three
fundamentally different phenomena currently described
by unmarriageable models, i.e., polymerization, phase
separation, and structure growth. Of these, polymer-
ization is intrinsically nonconserving, since it involves
mutation of one chemical species into another. Phase
separation, on the other hand, is intrinsically conserving,
since it only concerns the spatial redistribution of mat-
ter. Finally, structure growth requires tracking a surface
in space [37], a task to which a formulation in terms of
partial differential equations as is commonly employed in
theories of phase separation [31] is particularly ill suited
[38,39]. To overcome these hurdles we resort to a phase
field model.

B. A phase field model

Phase field models were originally invented to study
solidification [40], having since been applied to other
growth processes (see, e.g., [41,42] and references
therein). The phase field is an auxiliary function of time
and space, satisfying some appropriate equation. The
interface is then defined as the set of contour lines corre-
sponding to a particular value of the phase field. Thus
we effectively replace a moving-boundary (Stefan) prob-
lem by a simpler fixed-boundary problem involving one
additional equation. No distinction is made between the
different phases and their interfaces, hence the whole do-
main can be treated in the same way numerically. More-
over, this approach allows the computation of realisti-
cally complicated interfacial structures whose connected-
ness changes in time, and we believe it to be particularly
suited to our problem, which combines phase separation
and structure growth.

It remains to derive the appropriate equations for the
system. Rather than using the conventional formulation
of ordering dynamics in terms of partial differential equa-
tions, we opted for the computationally efficient cell dy-
namics systems (CDS) method of Oono and Puri [43-45],
where space is assumed discrete from the outset and di-
vided into “cells.” Modeling then consists of two steps:
(i) modeling of each cell, and (ii) connecting cells. The
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first step is essentially the calculation of the thermody-
namic force that drives the order parameter within that
cell to the value pertaining to either of the phases in equi-
librium and away from the single unstable state. Here the
need to define a nonequilibrium free energy is circum-
vented by introducing a map (i.e., an injection of the set
of real numbers, where the order parameter takes values)
with stable fixed points corresponding to the two coexist-
ing phases and an unstable fixed point corresponding to
the unstable one-phase state. Next, cells are connected
to take cooperative interactions into account: the nonlo-
cal driving force for order parameter change in a given
cell is taken to be proportional to the difference between
the value of the order parameter in that cell and a suit-
ably defined average of its values in neighboring cells.
In addition, in the conserved-order-parameter case that
concerns us here, a correction must be applied to en-
sure conservation. For details of the method we refer the
reader to the original publications [43—45].

We consider a two-dimensional (2D) system for sim-
plicity. Our modeling of PDLCs then proceeds as follows.

(i) Following Keblinski and co-workers [42], we intro-
duce two coupled fields ¢ and ¢, the former describing
the field causing the growth and the latter describing the
presence (¢ > 0.5) or absence (¢ < 0.5) of gel. The
interface between gel and nongel is thus defined as the
contour line ¢(x,y) = 0.5. Note that our fields take val-
ues in the interval (0,1) instead of the more common
(=1,+1). Hence 9 is the monomer concentration.

(ii) We model phase separation in the primordial LC-
monomer mixture using the CDS method. ¢ is also
evolved according to the conserved-order-parameter ver-
sion of the CDS method, reflecting the reasonable as-
sumption that no growth can occur in the absence of
monomers. Furthermore, we couple the two fields in such
a way that the gel grows at the expense of the monomer,
by inclusion of a sink term in the equation for 4, and of
a source term in that for ¢. More precisely, we require
that our fields satisfy

P(x,t + 1) = Fy [¢(x,t)]
—((Fy [ (x, )] = ¥(x,1))) — L(x,t), (2)
B(x,t+1) = Fy [p(x,t)] — ((Fg [#(x,1)] — B(x,1)))
+ad(x,t) — € [p(x,t) — $(t)] , (3)
with
Fy [$(x,1)] = f (b(x,1)) + Dy [((¥(x))) —¥(x,1)], (4)
Folo(x,8)] = f (d(x,1)) + Dy [((#(x))) — é(x,¢)].  (5)

({*)) — * is the isotropized discrete “Laplacian” on the
2D square lattice [44],

(b)) = 5 S (ot)+ 15 %000, (6)

NN NNN

where NN and NNN denote nearest and next-nearest
neighbors, respectively. Moreover, we have the follow-
ing.

(a) I(x,t) > 0 is an interaction term leading to growth

of gel and depletion of monomer such that the quantity
¢ + arp is globally conserved. « is the “exchange rate”
between fields ¥ and ¢; we set @ = 1 in all our calcula-
tions, in which case it is legitimate to identify ¢ with the
gel concentration. We choose I(x,t) to be of the form

I(x,t) = cy(x,t)|Vo(x,t)], (7)

where c is a positive constant. With this choice of inter-
action term, growth occurs at the gel surface (|V¢| # 0)
whenever monomers are present (¢ # 0). We approxi-
mated the gradient in Eq. (7) by the usual space-centered
difference formula [46].

(b) For f(x) we introduce a variant of the tanh map,
with stable fixed points 0 and 1, unstable fixed point 0.5,
viz.,

f(z) = % {1 + Atanh [tanh—l (%) (22 — 1)] } . (®)

with A = 1.3 as in preceding work [43,44].

(¢) The (nonlocal) term multiplying € in Eq. (3) stabi-
lizes the pattern at its instantaneous composition [47-49],
thus freezing late-stage growth. This will be discussed in
more detail below. a(t) is the spatially averaged gel con-
centration, given by Eq. (14).

(iii) The choice of initial conditions is motivated by
our interest in modeling chain polymerization, an intrin-
sically inhomogeneous process [50] used in the fabrication
of real PDLCs. A calculation is started by assigning val-
ues 9, ;(t = 0) = 0 and ¢; ;j(t = 0) = 1 to a fraction g
of (randomly chosen) lattice sites and ; ;(t = 0) = g
and ¢;;(t = 0) = 0 to all other sites, where o is
the initial concentration of monomer and we have de-
fined ; ;(t) = ¥(xsi,y;5,t) and ¢; ;(t) = ¢(z;,y;,t), with
z;, = (t—1lhand y; = -1k (¢ = 1,2,...,N;
j = 1,2,...,N, h is the lattice spacing, taken as the
unit of length). Nongel sites are then biased so that the
average monomer concentration is 9o (because g < 1,
this correction is usually quite small). Equations (2) and
(3) are then advanced in time.

The nonlocal term multiplying £ in Eq. (3) was first
introduced in a CDS model of microphase separation
in block copolymer mixtures by Oono and co-workers
[47-49], in the context of which it can be shown from
dimensional arguments that & oc =2 (I being the chain
length). Things become much more transparent if we
consider the corresponding partial differential equation

for ¢ [51],

96(%.t) _ g2(_g(x,t) + 6*(x, )

ot
~V2¢(x,1)] - €[p(x,1) — S(1)], (9)

where we have dropped the chemical reaction term. This
is legitimate in view of the fact that stabilization prevails
only after all chemistry has stopped due to exhaustion of
monomer (see Sec. IIT). Now it is easily seen that Eq. (9)
can be derived from a free energy functional containing,
besides the usual short-range term Fsgr, a contribution
from a long-range interaction
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F = Fsp + FLr
/ dx [——¢2(x )+ ¢“(x t)+ 5 [Vrﬁ(x, t)] ]

+e / dxdx’ [¢(x, 1) — $(1)]
xG(x — x') [¢(x’, t) — E(t)] , (10)

where G(x — x’) is the Green’s function for Laplace’s
equation, satisfying VZG(x — x') = —6(x — x'). In block
copolymer mixtures the long-range contribution origi-
nates from the fact that macroscopic phase separation
is inhibited by connectivity, which imposes a penalty on
long-range fluctuations of the composition [52,53]. Fur-
thermore, Eq. (10) is equivalent to the model proposed
by Sagui and Desai to describe amphiphilic films [54]
in the limit of infinite film thickness L, for which their
g(x — x’) and our G(x — x') coincide. In this case, for
an appropriate composition a droplet pattern will de-
velop that freezes in a monodisperse configuration at late
times [55]. The linear stability of periodic, steady-state
solutions to Eq. (9) in one-dimension was first investi-
gated by Bahiana and Oono [49] using a simplified form
for Fsgp and by Liu and Goldenfeld [56]. More recently,
Glotzer and Coniglio have analyzed Eq. (9) in the limit
of infinite-order-parameter dimension n [57] and found a
microphase-separated state if 0 < £ < %, in agreement
with Liu and Goldenfeld’s 1D result [58].

The selection of a length scale can be more easily un-
derstood by writing the long-range part of the free energy
FLgr in terms of the Fourier components of ¢,

=¢ Z |6¢k(t)| (11)
b(x,t) — (t) = Z S (t)e ™™, (12)
k

which penalizes small-k (long-wavelength) fluctuations
(k = |k|). Now Eq. (11) is exactly that introduced by de
Gennes in his treatment of the effect of cross links on a
mixture of polymers [59], where use was made of an elec-
trostatic analogy. Studies of the dynamics of phase sep-
aration in block copolymer systems including this term
(albeit restricted to the linear regime) have been reviewed
by Daoud [60]. Finally, we note that Eq. (9) has also
been proposed to study phase separation in chemically
reactive mixtures [11,61-63].

III. RESULTS

We have integrated Eqgs. (2)—(5) with initial conditions
as described in the preceding section and periodic bound-
ary conditions, on a square lattice of size N? = 64 x 64,
for ¥ = 0.7, g = 0.01, A = 1.3, D, = Dy = 0.5,
¢ = 1.0, and £ = 0.01. 1o is chosen so as to be in the
droplet-forming region of the phase diagram of a binary
mixture; it lies above the site percolation threshold for
the square lattice (= 0.59275 [64]) and corresponds to
® = 2¢ — 1 = 0.4, where & € (—1,1) is the more usual
order parameter of spinodal decomposition studies. This
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FIG. 2. Spatially averaged monomer (solid line) and gel
(dashed line) concentrations vs time, for ¥o = 0.7, g = 0.01,
Dy = Dy = 0.5, c = 1.0, and £ = 0.01.

effectively puts us in the hexagonal phase of Sagui and
Desai’s model (see Fig. 1 in [54]), which should further
enforce monodispersity [55]. Moreover, it is consistent
with the experimental requirement that LC concentra-
tions should be below ~ 53% volume, above which an
inverted phase of polymer droplets in a LC matrix (“poly-
mer ball”) is found [17,65].

The volume fraction of initial gel “seeds,” g must be
small enough that it does not lead to a uniform gel. On
the other hand, ¢ will fail to arrest phase separation if too
small, but prevent it completely if too large. A is as in
preceding studies [44] and ¢ has been chosen for compu-
tational convenience, pending a more realistic description
of the chemical processes involved.

Taking Dy, = Dy may appear puzzling at first sight,
given the fundamentally different natures of monomer
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FIG. 3. Gel concentration at ¢ = 0, for the same system as
in Fig. 2.
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and gel. In our experience, however, changing these
quantities only accelerates or decelerates the dynamics,
but does not alter it qualitatively. This is supported
by a study of the Ginzburg-Landau equation with a
concentration-dependent mobility [66].

Figure 2 shows the spatially averaged concentrations,

defined as

(a)

FIG. 4. (a) Monomer and (b) gel concentrations for the
same system as in Fig. 3, but at ¢ = 10.
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_ 1 X
¥(t) = vz Z ¥i,;(t), (13)
X
¢(t) = 32 Z #:,5(t), (14)

for a typical run. Essentially all the chemistry takes place
in the first ~ 250 time steps, after which concentrations

FIG. 5. Same as Fig. 4, but at ¢ = 50.
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take on their asymptotic values corresponding to total
exhaustion of monomer.

Figures 3-10 are snapshots of the system for times ¢t =
0 to t = 5 x 10* (measured in number of lattice updates).
In all contour plots, the depth of shading is proportional
to the height of the function plotted. Figure 3 shows
the initial condition for ¢, i.e., the gel seeds at ¢t = 0.
The growth of gel from these initial inhomogeneities [cf.

(a)

FIG. 7. Gel concentration at ¢ = 250, for the same system
as in the preceding figures.

Eq. (7)] is shown in Figs. 4-6; note the complementarity
of (a) ¥ and (b) ¢. The gel network then percolates
and consequently the gel-poor region fragments into a
number of “holes” (Fig. 6). At this stage, practically all
of the monomer has been exhausted but the incipient gel
still contains vast regions of fairly low ¢ (Fig. 7), within
which gel-poor (LC-rich) droplets nucleate (Figs. 7 and
8). At later times, black is predominantly gel (maximum
concentration ~ 85%), while white is predominantly LC
(maximum concentration ~ 90%). All action seems to
cease after t ~ 2 x 10%.

All results presented henceforth are averages over ten
runs. We computed the 2D gel structure factor, defined
by

FIG. 6. Same as Fig. 4, but at t = 100. FIG. 8. Same as Fig. 7, but at ¢ = 1000.
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FIG. 9. Same as Fig. 7, but at t = 5000.

S(k,t) = <~Nl—2 > (15)

where k = (27/N)(mé;, + né&;), m,n = —(N/2) +
1,...,N/2, and the angular brackets denote averaging
over initial conditions. The circularly averaged structure
factor is then

S(k,t) = ZS(k,t)/Zl,
k k

with k = 2mn/N, n = 0,1,2,..., N, and the sum ¥,
is over a circular shell defined by n — % < |k|N/(27) <

> [6i5(t) — S(t)] ™)

4

(16)

FIG. 10. Same as Fig. 7, but at t = 50 000.
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FIG. 11. Circularly averaged gel structure factor at ¢ = 100
(solid line); t = 200 (dashed line); ¢t = 500 (dotted line);
t = 1000 (dot-dashed line); ¢ = 2000 (solid line with filled
circles); t = 5000, 10000, 20 000, and 50 000 (remaining solid
lines, from bottom to top). See the text for discussion.

n+ % This latter quantity is plotted in Fig. 11 for t =
100, 200, 500, 1000, 5000, 10 000, 20 000, and 50 000. In
the coarsening regime (¢ < 2000), the peak increases in
height due to gel segregation and shifts to smaller values
of k as the characteristic length scale increases [compare
with Fig. 14(b) in [54]]. For 2000 < ¢t < 20000 only
segregation, but no further growth of domains, occurs.
The pattern is effectively frozen for ¢ = 20 000.

In order to perform a droplet size analysis we started
by “hardening” the pattern at time ¢ by assigning to
each lattice site (¢,7) an “Ising spin variable” s;; such
that s; ; = 1if ¢;; < 0.5 and s; ; = 0 otherwise. This
allowed us to identify droplets of “nongel” (i.e., LC, since
there is no monomer left) as clusters of 1’s. These clus-
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droplet size

FIG. 12. Droplet size frequency histograms. From left to
right: ¢ = 1000, 5000, 10000, 20 000, and 50000. The cor-
responding mean droplet sizes and standard deviations are
given in Table I.



53 CELL DYNAMICS MODEL OF DROPLET FORMATION IN . . .

20.0 T T T

18.0 4

mean droplet size

16.0 ;
0.0 10000.0

20000.0  30000.0  40000.0

t

50000.0

FIG. 13. Mean droplet size (number of sites per droplet)
vs time, starting at ¢ = 1000.

ters were then labeled and their size distribution found.
Droplet size frequency histograms for ¢ = 1000, 5000,
10000, 20 000, and 50 000 are shown in Fig. 12. Sizes are
given as number of spins per droplet and the bin width
is 4. At the latest times shown (frozen pattern), more
than 60% of all droplets have sizes between 20 and 24.
In Fig. 13 we plot the mean droplet size as a function of
time; note that it is constant on the scale of the standard
deviation (not shown in the figure; see Table I).

IV. CONCLUSION

We have developed what is perhaps the simplest model
of PDLC formation incorporating phase separation, poly-
merization and gelation, and pattern formation. Results
obtained for a suitable choice of model parameters are in
agreement with observations on real PDLCs, for which
tuning of the relevant physical parameters is also cru-
cial. Our approach is based on the CDS method and is
thus less computationally expensive than direct integra-
tion of nonlinear partial differential equations (typically
the computational cost was less than 0.3 s per time step
on a Silicon Graphics Indigo 3000 computer workstation).

We believe that our model captures most of the essen-
tial physics of the phenomena under study, albeit con-
taining a fair degree of arbitrariness. Namely, we have
the following.

(i) CDS models (as well as partial differential equa-
tion models) imply coarse graining on a not unambiguous
mesoscopic length scale [44,67]. It is not obvious that the
same coarse-graining procedure should be appropriate for
LC-monomer and gel variables alike.

(ii) No distinction is made between polymerization and
gelation, which are modeled in a simplified way allowing
little control. Since the fabrication of real PDLCs relies
rather heavily on being able to manipulate the chemistry,
this is a shortcoming we need to remove in order to make
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TABLE I. Mean droplet sizes and standard deviations for
the data in Fig. 15.

| t Mean droplet size Standard deviation|
1000 16.6 7.5
5000 19.6 6.9
10000 19.4 6.4
20000 19.5 6.5
50000 19.6 6.5

closer contact with experiment.

(iii) A more realistic treatment of the gel structure
including connectivity, and possibly also elasticity, would
be most desirable.

(iv) Swelling of the gel by the LC-monomer, a poten-
tially important effect when dealing with gel-solvent sys-
tems [20], has been neglected altogether.

Whether all, or any, of the above can be implemented
in the present model, or whether they will necessitate a
radical change of approach, remains unclear.

All results presented are for a two-dimensional, square
system. We do not expect to see any significantly new
physics by going to three dimensions, and thus the major
investment of computational resources involved in such
a step is, in our view, not justified at present. There
might be a case, however, for switching to a triangular
lattice. Recall that the motivation for the rather uncon-
ventional form of the Oono-Puri Laplacian, Eq. (6), is
that it should yield as isotropic a pattern as possible,
as well as good scaling of the corresponding structure
factors [44]. Tomita [68] has shown that, of all 2D Lapla-
cians including nearest and next-nearest neighbors on the
square lattice, the Oono-Puri form yields optimal results.
A similar analysis has been performed in three dimen-
sions by Shinozaki and Oono [69]. It is easy to show that
both the usual five-point approximation to the Laplacian
and Oono and Puri’s version are only isotropic to order
k2 [70], the difference between them being attributable
to the magnitude of the correction terms at order k*.
By contrast, a Laplacian containing only nearest neigh-
bors on a triangular lattice is isotropic to order k%, due
to the higher symmetry of the lattice. This is a well-
known problem in lattice-gas [71] and lattice-Boltzmann
[72] simulations, where isotropy is essential for recovering
the correct hydrodynamic behavior.
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FIG. 10. Same as Fig. 7, but at ¢t = 50 000.



FIG. 4. (a) Monomer and (b) gel concentrations for the
same system as in Fig. 3, but at ¢ = 10.



FIG. 5. Same as Fig. 4, but at £ = 50.



FIG. 6. Same as Fig. 4, but at ¢ = 100.



FIG. 7. Gel concentration at t = 250, for the same system
as in the preceding figures.



FIG. 8. Same as Fig. 7, but at ¢t = 1000.



FIG. 9. Same as Fig. 7, but at t = 5000.



